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Abstract

While non-volatile memory (NVRAM) devices have the po-

tential to alleviate the trade-off between performance, scal-

ability, and energy in storage and memory subsystems, a

block interface and storage subsystems designed for slow

I/O devices make it difficult to efficiently exploit NVRAMs

in a portable and extensible way.

We propose an object-based storage model as a way of

addressing the shortfalls of the current interfaces. Through

the design of Muninn, an object-based versioning key-value

store, we demonstrate that an in-device NVRAM manage-

ment layer can be as efficient as that of NVRAM-aware

key-value stores while not requiring host resources or host

changes, and enabling tightly-coupled optimizations. As a

key-value store, Muninn is designed to achieve better life-

time and low read/write amplification by eliminating inter-

nal data movements and per-object metadata updates using

Bloom filters and hash functions. By doing so, it achieves as

little as 1.5 flash page reads per look up and 0.26 flash page

writes per insert on average with 50 million 1 KB key-value

pairs without incurring data re-organization. This is close to

the minimum number of flash accesses required to read and

store the 1 KB key-value pairs, thus increasing performance

and lifetime of flash media.

Categories and Subject Descriptors D.4.2 [Operating Sys-

tems]: Storage Management

General Terms Design, Experimentation, Measurement

Keywords Object-based storage device, Flash memory,

Key-value store, Versioning
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1. Introduction

Non-Volatile Random Access Memories (NVRAMs) are be-

coming increasingly important in the storage hierarchy as

the need for energy-efficient and high performance stor-

age increases in both consumer and enterprise markets.

Consumer products, such as laptops and smart phones, are

adopting flash memory to enhance their battery life and re-

sponse time instead of hard drives. Enterprise SSDs (Solid

State Disks) are used as replacements for 10,000/15,000

RPM hard drives. Beyond flash memory, several other types

of non-volatile memories such as Phase Change RAM

(PRAM), Spin-Torque Transfer RAM (STT-RAM), and

memristors are competing to be the future storage and/or

memory medium [26].

Despite the increasing importance of NVRAMs, storage

and memory subsystems in current operating systems are

not yet fully ready to adopt this technology shift, because

of the assumption of slow block-based I/O devices in the

design of core I/O subsystems [8]. At the device level, the

design of device subsystems such as mapping and wear-

leveling is restricted and complicated due to the limited

flexibility of a block-based interface, providing sub-optimal

performance [22]. Several optimizations such as nameless

writes [33] and DFS [20] are proposed to alleviate these ef-

ficiency issues, but they require changes in the data man-

agement layer in the host systems whenever a new type of

NVRAM becomes available. Supporting heterogeneous de-

vices would be even more difficult, because it may require

multiple management layers or extended file systems for the

NVRAM.

We propose the use of the object-based storage model for

NVRAMs to address the shortcomings of current NVRAM

interfaces. This model offloads the NVRAM data manage-

ment layer from a file system to a device and provides an

object interface, which supports variable-length requests.

By isolating the NVRAM specific technology behind a rich

object interface, it allows a file system to be independent

from the underlying storage medium, enabling an easy tran-

sition between different NVRAM technologies. Heteroge-

neous NVRAM devices and hybrid NVRAM devices such

as PRAM-Flash hybrid and Flash-HDD hybrid can also be
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transparently supported without redesigning or modifying a

local file system. Performance-wise, the in-device NVRAM

management layer can be as efficient as native file systems

designed for a specific type of NVRAM, while allowing

tightly-coupled hardware optimizations and eliminating the

duplicate translation layers in the data path. In addition, its

capability of handling variable-length objects and the asso-

ciated metadata allows storage systems to support a wide

variety of device types including key-value stores and active

disks without altering a device-host interface.

We designed Muninn to demonstrate the design flexibil-

ity, efficiency, and extensibility of the object based storage

model as a new storage interface for non-volatile storage

devices. For extensibility, we show Muninn can add new

features to existing file systems or applications without al-

tering them. To demonstrate this, we add a versioning sup-

port to Muninn that can be transparently applied to exist-

ing file systems. For efficiency and flexibility, in the design

of key-value management policies, we try improve read and

write amplifications of a key-value store by eliminating on-

flash per-object metadata and internal data movements using

Bloom Filters and hash-based data placement. This may in-

cur more read operations when compared to the mapping

layer in FTLs due to the possibility of false positives in the

bloom filter, however we expect it could increase the life-

time of devices by reducing the number of writes and fre-

quent cleaning. Additionally, Muninn can help a host system

achieve better scalability; the host no longer needs to man-

age the exact mappings between a key and a logical block

number per device.

Compared to host-side key-value stores like SILT [27],

Muninn can be configured to fit in a dedicated in-device

memory, requiring no internal data movement on flash. By

directly managing flash memory, it can avoid the overheads

from having two index structures; one for key-value store,

and another for SSDs. Our results show that without requir-

ing any background operation, Muninn achieves 1.5 page

reads per look up and 0.26 page writes per insert on average

while inserting 50 million 1 KB key-value pairs and reading

25 million pairs back on a flash memory with 4 KB pages.

Considering that the minimum numbers of flash accesses

for just reading and storing one key-value pair are 1 page

read and 0.25 page write in this configuration, it shows that

the average flash storage management overhead can be mini-

mized while providing additional features such as versioning

and compression. We make two contributions in this paper:

• We design Muninn, which is a versioning key-value store

built on the object-based storage model. We show that

Muninn can add versioning transparent to existing file

systems while achieving low read/write amplifications.

• We introduce the hash-based data placement policy for

flash memory, which eliminates the need for per-object

metadata and a direct logical to physical mapping, reduc-

ing write amplification.

2. Background and Related Work

We first describe the evolution of NVRAM storage systems,

focusing on their design issues and interface changes. We

then discuss versioning file systems, key-value stores, and

Bloom filters that influence the design of our Muninn.

2.1 Evolution of NVRAM System Designs

As NAND flash memory became cheaper and large enough

to replace programmable read-only memory and battery-

backed SRAMs in late 90s, and eventually data storages in

mid 2000s, many flash-aware file systems such as YAFFS [1],

UBIFS [19], and RCFFS [21] were designed and imple-

mented for embedded systems. Since both the file system

and hardware are deployed together, flash-aware file systems

provided tightly-coupled optimization, an efficient place-

ment and cleaning policies. To further improve the lifetime

and performance of these devices, several file system spe-

cific extensions using byte-addressable NVRAM have been

studied [14, 24]. Condit et al. propose a PRAM file sys-

tem that directly places byte-addressable NVRAMs such as

PRAM and MRAM on the main memory bus, and uses them

as a backing store [11]. While these systems have the most

efficient architecture to handle NVRAMs, they are mostly

used in embedded systems or custom designed systems due

to their limited portability, compatibility, and dependency

between a file system and a device.

In modern SSDs, the compatibility issue has been solved

by adding an indirection layer between a legacy file system

and storage medium in a device. This sector-to-page map-

ping layer, called the Flash Translation Layer (FTL), allows

legacy file systems to access an SSD as a block-based stor-

age device. However, due to the lack of file system seman-

tics, the efficiency of data structures in SSDs is typically

lower than that in flash-aware file systems. In the data path,

while the data allocation layer in a legacy file system is still

processed incurring some overhead, its results are remapped

and not used inside the device.

There have been many efforts to improve the efficiency

of FTLs, mostly focusing on detecting and handling various

types of workloads [10, 30]. Some of the recent approaches

also look at the contents of the workload to further optimize

the device [9, 17].

While these optimizations can improve the inefficiency

of FTLs, the problems with duplicate translation layers and

limited file system semantics cannot be solved without an

interface change. Nameless writes [33] remove a file sys-

tem address translation by extending a block interface to in-

form the file system whenever the location of data changes.

DFS [20] uses an another approach to this problem, which

moves the flash translation layer to the virtualized flash layer

in a host operating system. In these approaches, however,

significant changes in the operating systems code are re-

quired, and more importantly, these changes are not inde-

pendent from the NVRAM medium.
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The object-based storage model has been used mostly in

large-scale distributed storage systems to improve scalabil-

ity by adding intelligence to the devices [7, 15]. For use as a

NVRAM interface, Rajimwale et al. [31] suggest some opti-

mization techniques such as informed cleaning, and priority

I/O scheduling. Kang et al. [22] study the effects of vari-

ous data placement policies in this model, and other flash-

oriented optimizations. We show that this model can support

various types of NVRAM I/O devices including a special-

ized device like a key-value store, providing a new feature to

the system in a portable and efficient way.

2.2 Versioning Flash Systems

Since flash memory requires out-of-place updates, every

flash device has multiple versions of the modified data

at least for some time. However, not many flash storage

systems offer versioning, because they must preserve the

write order, which is not easy in most FTL schemes. They

also need to store metadata and provide additional user

commands such as snapshot and rollback. For example,

Lightweight Time-shift FTL (LTFTL) [32] can create ver-

sion states at any time and go back in time to desired states.

However, because it is based on block-based FTL, snap-

shots can be supported, but finer-grained full versioning

such as per-file versioning and per-directory versioning is

not possible. In contrast, our object-based versioning system

provides both a per-object versioning and a system-wide

snapshot transparently using the flash space that was already

used. Similar to Muninn, Tango [4] provides snapshots, but

it is designed to support consistent replication without us-

ing complex distributed protocols, not focusing on directly

managing flash memory or providing per-object versioning.

2.3 Key-Value Stores

Key-value stores are specialized file systems optimized for

insert and retrieval of small data associated with a fixed

length key, replacing the need for complex database sys-

tems. These key-value stores are designed to run on a host

using SSDs, so reducing host system resource usage is one

of the main design factors in this system to achieve not only

performance, but also scalability. FlashStore [12] is a key-

value store used as a cache for hard-disk based key-value

storage system. It uses a single in-memory hash table to in-

dex all keys on flash and hence achieve one read per lookup.

SkimpyStash [13] indexes the flash via a hash table with lin-

ear chaining to achieve low memory footprint. However, it

requires on average 5 flash reads per lookup. BufferHash [3]

maintains multiple hash tables—one in memory and the oth-

ers on flash memory— and uses a small set of Bloom fil-

ters (BF) to indicate whether a key might be present in a

hash table. BloomStore [28] is a recent key-value store based

entirely on Bloom filters. They append incoming key-value

pairs to Flash page and maintains one BF per flash page.

Hence, the system contains many BFs and lookups have to

search all the BFs in parallel and in batches to locate a key.
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Figure 1. NVRAM OSD exposing T10 object interface

Aiming to achieve low memory footprint, they store large

amounts of older BFs in flash and read them in for lookups,

increasing read amplification. The increased false positive

rate of having multiple BFs has not been addressed properly.

SILT [27] achieves a low memory footprint and a low read

and write amplification using log store, hash store and sorted

store. However, the number of flash read and write accesses

can be much higher than a per-request amplification factor

due to background processes, moving data between stores.

Also, its read/write amplification factor does not consider

the page accesses by an SSD. Supporting failure recovery

and deletion can be also difficult. In contrast, our system

stores each key-value pair only once and does not use any

background process to manage the written key-value pair.

2.4 Hashing and Bloom filters

The characteristics of flash memory and byte-addressable

NVRAMs make hashing an interesting choice today, be-

cause the access latency is the same regardless of its ad-

dress. In addition, it can minimize the metadata overhead by

not storing the actual key-page mapping. Our scheme uses

multiple hash functions associated with multiple BFs [6] to

achieve better space utilization.

Among various types of BFs, our Bloom filter structures

are similar to Dynamic BFs [16] and Scalable BFs [2] in a

way that multiple small-size BFs exist instead of a large BF.

Dynamic BFs increase or decrease their sizes as the number

of keys in each BF changes. To reduce the compounded error

probability, the false positive rate of each Bloom filter keeps

decreasing as the number of BFs increases in Scalable BFs.

Muninn’s per segment BF is most similar in design to the BF

based summaries described in [25].

3. Object-based Storage Model

The object-based model [15] consists of two main compo-

nents: an object-based file system and an object-based stor-

age device (OSD). Unlike a typical file system, an object-

based file system only provides the name resolution, offload-

ing the storage management layer to the OSD. By isolating

device-specific technology behind a metadata rich object in-

terface, the file system becomes independent of the under-

lying storage medium while being able to deliver full file
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system level semantics to the devices. Thus, the NVRAM

management layer in the device can be designed similar

to that of a native NVRAM-aware file system while en-

abling co-optimization between the data management layer

and NVRAM hardware. In addition, a single object-based

file system can support multiple heterogeneous OSDs, en-

abling a drop-in replacement for new types of NVRAM de-

vices without altering any host subsystem.

When a hybrid NVRAM device becomes available, for

example, both NVRAM-aware systems and FTL-based sys-

tems would require a host system change. A host file system

and its I/O subsystems need to understand the characteristics

of multiple NVRAM medium in NVRAM-aware systems.

FTL-based systems would require an intelligent layer in a

host system that can deliver file-system or user-level seman-

tics to the device, otherwise, the use of NVRAMs is limited

to a write buffer for file system blocks. Nameless writes [33],

is one way of delivering semantics. However, it will still re-

quire a host system change whenever a target NVRAM me-

dia changes.

Interface The file system and OSDs communicate via

an object-interface, which exposes various types of object

commands as depicted in Figure 1. Each operation takes

an object, which includes variable-length data and metadata

associated with the data, describing one file-level or user-

level I/O request. By exposing various operations to capture

file system operations, this eliminates the needs for host

system utilities such as TRIM, which informs the devices

whenever a file is deleted. The format of an object and types

of object commands are standardized by ANSI T10 [29].

However, one of the major issues of the current standard

is that basic object I/O operations such as read, write and col-

lection are supported, limiting the range of available device

features. For example, an in-device search operation, as in-

troduced in [23], cannot be represented easily with the stan-

dard command sets. Therefore, we suggest allowing devices

to publish their features to a host system when mounting,

and letting a host subscribe the features to be used. Addi-

tionally, an execute command are required to use a feature

on demand.

Flat namespace Objects are identified by a 128-bit

unique identifier, not by human-readable names. There is no

hierarchy between objects, offering more flexibility when

assigning and distributing objects. For example, the file sys-

tem can assign a certain range of object identifiers to each

distributed node so it can retrieve the node that stores an ob-

ject by looking at its identifier, making searching and shar-

ing easy. However, this does not prevent a host system from

creating a hierarchy on top of OSDs, because directory hi-

erarchies and name resolution is still managed by a host

system. Our versioning system does not use a hierarchy, but

we encoded a version information in an object identifier so

users can easily control versions of key-value pairs without

any support from a host file system or an additional library.

User interface The object-based storage model can sup-

port both POSIX interface and an object-interface as a user

interface. When the POSIX interface is used, the Virtual File

System (VFS) in an operating system passes an inode num-

ber and an offset to an object-based file system. Then, the

file system generates an object identifier, and sends data,

and necessary metadata for the given type of request to the

OSD via an object interface. When an application directly

accesses the OSD via an object interface, the application can

send higher level information to optimize its data path. For

example, full text searching can be executed within a device,

sending only the results of the search to the host, not the

whole contents of an object [23].

Cost While providing advanced and efficient data pro-

cessing in this model, the hardware manufacturing cost of

an object-based device can remain as low as SSDs, because

SSDs already have multiple powerful embedded processors,

large memory, and multiple high-bandwidth independent I/O

channels to the underlying medium to process mapping and

wear-leveling [23]. Handling object requests and the sparse

namespace are the only additional overhead to the SSD.

Also, considering the estimated cost of an iPhone 4 proces-

sor is around $10 [18], adding more powerful processors for

advanced data management would not increase the cost of

OSDs much.

4. Muninn: Versioning Key-Value Store

We designed Muninn to demonstrate the design flexibil-

ity, efficiency, and extensibility of the object based storage

model as a new storage interface for non-volatile storage de-

vices. To show the extensibility of the object interface, we

transparently bring new features to existing file systems or

applications in an efficient way. We show design flexibility

and efficiency through our design of key-value management

policies that forego traditional logical-to-physical mapping

layers in favor of bloom filters and hash based data place-

ment. It data management layer is designed to reduce the

average read and write amplification and improve life-time

of a device by reducing metadata updates sacrificing some

read performance for not frequently accessed objects.

The design constraints of Muninn are different than that

of most host-side key-value stores. While lowering per-key

memory usage is a primary goal of most host-side key-value

stores, Muninn makes this memory utilization a configurable

parameter because a in-device memory is used to process

key-value pairs, not shared by other devices or processes.

Thus, instead of moving and sorting data around the multiple

internal stores for reduced memory usage, in-device key-

value stores can focus on increasing life-time by reducing

unnecessary data movements. Additionally, data placement

and cleaning polices can be specialized for the purpose of

the device, selectively cleaning data blocks and reducing the

number of reads or writes per key.
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Muninn adds versioning transparent to the existing file

system while being accessible from file system utilities

through an object interface for advanced management. A

versioning feature was chosen because a history of updates

can be maintained at a low cost in flash memory where over-

written data is remained until it is cleaned due to out-of-

place update requirements. We use a chain of BFs to pre-

serve the update history, and find an object. Similarly, in-

stead of storing the physical address of an object, we use a

hash function to place and find data in a flash block.

We first describe how the host systems and device ap-

plications communicate, and then explain how we insert and

search data in flash memory using hash functions and Bloom

filters in Section 4.2 and 4.3. We discuss how we preserve

the write order to support versioning in Section 4.4. Lastly,

we explain the design of a merger and the consistency of

in-memory metadata.

4.1 Host-Device Communications

Since an OSD can be thought of as a key-value store that

supports a fixed-length key and a variable-length value, file

systems or applications can use existing read and write oper-

ations to access key-value pairs. However, we need some ex-

tra commands to manage versions. For example, mounting a

device with a specific version or undoing some changes on a

specific object requires a special command. To support this,

we make use of an execute as described in Section 3.

A version of an object is encoded in an object ID, not

stored as metadata to eliminate the need for keeping object

metadata on flash. We use a 64-bit object ID in Muninn,

which consists of a 32-bit identifier, a 16-bit version number,

and a 16-bit offset; it can hold up to 4 billion objects and

provide up to 64K different versions to each object. The

offset is used by the device to split large objects into multiple

pieces; each object can have up to 64K flash pages.

To snapshot and revert, file systems can increase or de-

crease the version number in an object ID; it can maintain a

global version number that is incremented periodically so all

objects that are written in the same period of time can have

the same version number. To rollback some changes for an

object, users can set the negative version number, which rep-

resents the number of modifications to be cancelled.

We support legacy file systems by constructing an object

ID from a partition ID and a LBA; a partition ID becomes

an identifier and a LBA is considered as an offset of an

object. This conversion is done by the kernel module that

runs between a file system and a device. Additionally, it

takes an ioctl command that allows applications to modify

the current version number.

4.2 Hash-based Data Placement

Muninn places key-value pairs using hash functions to elim-

inate a direct mapping between logical and physical ad-

dresses and the need for per key-value pair metadata. When

initializing a device, a flash memory is logically split into
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Figure 2. Overview of Muninn

fixed-length segments whose size is a multiple of a flash

erase block. Each segment consists of a fixed number of flash

pages, which is a minimum unit of writing in flash memory.

This ensures that no key-value pairs are written across seg-

ments, allowing segments to be erased independently. There-

fore, the physical address of a key-value pair can be repre-

sented by a segment number, a page offset (within a seg-

ment), and an offset (within a page).

On writes, the physical address of a key-value pair is

determined by hash functions and only the raw key-value

pair is written to flash memory. In-memory dirty data for

searching will be flushed later for consistency as described

in Section 4.5. However, using hash-based placement brings

several issues in flash storage system design. First, when a

hash collision happens, the system needs a way to relocate

the key-value pair and remember the new location. Second,

distributing key-value pairs across the entire flash device is

not practical. This is because it would require an in-memory

write buffer for every flash page if the size of a key-value

pair is not exactly the same as flash page. Third, segment

utilization can be low under a hot-cold workload where

some objects are more popular than others, generating many

collisions in the same location.

4.2.1 Insert and Delete

To address the issue with key-value pair distribution, we

maintain a small group of active segments in the data struc-

ture called active version table where key-value pairs can

be written as depicted in Figure 2(a). Each row contains in-

formation about a segment, and the segment that stores a

key-value pair is determined by using the last one byte of a

hash of a key. Having multiple rows has two purposes: dis-

tributing hot keys across a small set of segments lowering the

chance of collisions, and reducing the search space to find a

key-value pair.

Within a segment, Muninn addresses collisions using

multiple BFs and associated hash function to give multi-

ple locations to frequently updated keys within a segment.

More specifically, as shown in Figure 3, if a BF becomes

full or the corresponding page offset is already written, the

hash function associated with the next Bloom filter is used to
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Figure 3. Insert a key-value pair to an active version table

place data. For example, if a key exists in the first and second

BFs of a segment, we know that the same key-value pair has

written twice, and the hash function associated with the sec-

ond bloom filter contains the latest version. Once the hash

function to use is determined, we take the modulo operation

between the output of the hash function and the number of

pages in a segment to determine a page offset.

When a key cannot be placed by using hash functions

associated with BFs, the key is considered an overflowed

key. Muninn stores a hash of a key and a n-bit bitmap for

each overflowed key to provide additionally n different hash

functions each overflowed key can use; the position of a bit

in a bitmap represents the ID of hash functions.

By giving multiple locations to hot keys, it can keep

the segment utilization high even under hot-cold workloads,

however since the overflowed keys require at least 6 bytes

per key, the maximum size of an overflow map is fixed, and

the size of normal BFs is configured to minimize the size of

an overflow Bloom filter and an overflow map.

To preserve the write order, we sequentially allocate key-

value pairs in a bitmap so the last bit set indicates the last

hash function ID for the key. Similarly, key-value pairs are

written sequentially within a page so a larger offset repre-

sents later in time. When storing a variable-length value, it

additionally stores the size of the data into the page.

Deleting a key is the same as inserting the key with a

special value indicating that the key is deleted. Thus, when

a search function finds the pair with this special pattern as

the most recent result, it returns not-found, instead of this

special value.

4.3 Search

To find the physical location of a key-value pair, Muninn

needs to check multiple BFs to identify the hash function

originally used to place the key-value pair. However, search-

ing individual BFs is an inefficient operation because up to

one word access might be required for each bit checked.

Therefore, we adopt another data structures called the read-

only version table, which is optimized for searching multiple

BFs at a time as shown in 2(b).

Once there is not enough space to place a key-value pair

in a segment in an active version table, the corresponding
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Figure 4. Flushing BFs to a read-only table

row is flushed to the read-only version table. Since the key-

value pair is already written to the segment, only the BFs and

an overflow map are moved to the table. First, the flushed

standard BFs are added to the column-based BFs where mul-

tiple BFs can be searched at once with a minimum number

of memory word accesses. Figure 4 shows the process of

combining the the three sets of BFs of row 0, flushed at time

t1, t2, and t3. The bits of BF1 at position k, get combined to

form a 3-bit word at position k in the column-based BF1.

The column-based BFs improve search performance by

converting bit accesses to byte or word accesses. The number

of BFs to be combined is determined by considering the

memory access efficiency; the size of each column can be

byte-aligned (8) or word-aligned (32 or 64) depending on the

target architecture. In Muninn, we use a word size column,

because it is the most efficient in terms of a cache-line

efficiency.

To find a key-value pair, Muninn searches the active ver-

sion table and the read-only version tables. Muninn first de-

termines the row index using the hash of the key, and then

searches the multiple BFs of the row in a reverse order. This

is because a Bloom filter with higher index contains a newer

version of the key. When the key is found in the BFs for over-

flowed keys, it retrieves the physical address of the key from

the overflow map. If the key is in the BFs for non-overflowed

keys, it uses the corresponding hash function to calculate the

page address.

When the key is not found in the active version table,

BFs in read-only version tables are searched. It is similar to

search standard BFs, but each bit in a standard bloom filter

becomes a set of bits that came from each standard BF, added

to the combined BF. Checking whether a key is present

in a single Bloom filter involves examining whether k bit

positions determined by k hash functions are all set. Hence,

for each read-only version table, k columns determined by

k hash functions are read, and a bitwise AND operation is

performed. The 1s in this result vector represents the indices

of the BFs that may contain the key-value pair. It becomes

then straightforward to retrieve the segment number and the

page offset for the key-value pair from the table.

Performance-wise, searching for a non-existing key would

show the worst case performance, because Muninn has to
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Figure 5. User versions and internal versions

read all read-only only tables belongs to the current version.

The best case performance can be achieved when the keys

are found in one of the recent read-only tables. This means

newer key-value pairs can be quickly retrieved, and a older

key-value pairs that never updated would require multiple

flash page reads.

The number of unnecessary reads is also affected by the

false-positive rate of each BF, and the number of BFs to

be searched to find a key. Thus, the size of the memory,

number of table rows, and a decreasing factor of a false

positive rate should be carefully set, considering the trade

off between the number of reads and the size of memory.

For example, in consumer products, it could be configured

to have high false-positive rate, saving memory space but

sacrificing more reads. Caching some old, but not updated

objects can be cached or rewritten for better performance

and memory usage. In enterprise products, all version tables

can reside in memory with low false positive rate. The effects

of each variable are analyzed in Section 5 and evaluated in

Section 6.

4.4 Version Management Layer

To support snapshots and rollback, we have two data struc-

tures; a user version provides a snapshot and an internal ver-

sion is a merge unit that contains a time-ordered list of a

fixed number of read-only tables. User version increases as

a version number in an object ID increases, and internal ver-

sion increases when the number of read-only tables added

exceeds a threshold, as shown in Figure 5.

When all rows in a read-only table become full, it is added

to the head of a time-ordered list of the current internal ver-

sion and a new read-only table is created. When searching

for a key-value pair, it searches the read-only tables follow-

ing the list of the current internal version. If a key is not

found, it keeps trying to search the previous versions until a

match is found.

When a user version increased, the active, read-only ver-

sion tables, and current internal version are finalized to cre-

ate a snapshot. A user node is then created to store the inter-

nal, just finalized, version number. This represents the high-

est internal version number users can access in the version;

any internal version that is lower than this can be accessed

by this user version. For example, if the user version number

is 2, it can access internal versions from 0 to 2.

Reverting to one of the previous snapshots would just

require changing a user version number. If a user wants to

undo N changes to an object, a device searches the key-value

pair skipping the N objects, and then rewrites the object so it

can be searched first next time.

4.4.1 Version-aware Merge

Muninn does not automatically reclaim space because it

needs to keep the old versions of key-value pairs, including

deleted ones. However, it can merge old versions upon a

user request to free some space and achieve better search

performance.

The unit of merging in Muninn is the internal version

node, which is designed to have a fixed number of read-only

tables that are written around the same period. The merge

process tries to check the liveness of key-value pairs and

reclaim space for old versions except for the newest one in an

internal version. We use this fixed partitioning because the

liveness of the key-value pair cannot be determined without

looking at the other segments that might contain the same

key, but searching the entire segment for merging would

incur lots of read overhead.

The version-aware merger uses two thresholds to select

the target internal version and the segments: internal-version

utilization and segment utilization. The internal-version uti-

lization is calculated by performing the bitwise AND oper-

ation among all the combined BFs in the same internal ver-

sion, and counting the bit sets. Since the same key will set

the same bit position in BFs, the number of bit sets can indi-

cate the number of the same keys across multiple read-only

tables.

After selecting the target internal version, it searches the

live keys from the read-only version tables belong to the

target internal version considering the utilization of each

segment. The segment utilization is estimated, when the

corresponding row is flushed to a read-only table, by the

sum of the number of keys inserted to each Bloom filter,

and the number of hash collisions in the row. The number

of keys will indicate the empty space not used by any keys,

and the number of hash collisions represents the possibility

of the existence of duplicated keys. The effects of these two

merging thresholds are evaluated in Section 6.

4.5 Consistency

If capacitors in a device are not big enough to dump all in-

memory data structures to flash on a power failure, Muninn

can be configured to store a read-only version table, a user

version, and an internal version as soon as they become

fully written for metadata consistency. Thus, during runtime,

only one active version table and one read-only version table

remained dirty. Since they are smaller than most FTL data

structures, we can safely assume that they can be dumped to

flash upon a power failure.

7 2014/2/14



Symbol Description

fprini Initial false positive rate

nh Number of hash functions for data place-

ment

no Number of overflow BFs

r False Positive Rate reduction rate

nr Number of table rows

nrc Number of rows combined to form a read

only table

Table 1. Design parameters

5. Analysis

We discuss the three important design parameters in Muninn:

segment utilization (SU), false positive rate (FPR), and

memory usage (MU). The total amount of physical mem-

ory of a Muninn device needs to be chosen depending on a

desired FPR and SU. We explain the relationship between

these parameters in this Section, and show the sensitivity of

these variables with the experimental results in the next Sec-

tion. The adjustable parameters of Muninn are summarized

in Table 1.

Segment Utilization (SU ) SU depends on the utilization

U achievable for the said set of keys, nh, the number of

hash functions used for data placement and no, number of

overflow BFs.

SU =
data written to a flash segment

segment size
(1)

SU ∝ nh · Uhash + no · Uoverflowmap (2)

False Positive Rate (FPR) As more read-only version

tables are generated, Muninn needs to search more BFs. Lets

look at a case where fpr is the false positive probability of

one Bloom filter and there are n such BFs, and determine

the false positive probability of an item x not present in

all n BFs. Then, the probability that not all the address bit

positions of x in each of the n BFs are set to a non-zero

value is (1 − fpr)n. The combined fpr is given by the

probability that all the address bit positions of the item x

are set to a non-zero value in at least one of the n BFs is

1− (1− fpr)n [2, 16].

The FPR of a single read only table fprRO depends on

the initial FPR of a single Bloom filter fprini, the number

of BFs in a single row (nh + no) and the number of rows

combined to form a single read only table nrc and can be

given by

fprRO = 1− (1− fprini)
(nh+no)·nrc (3)

Since we tighten the FPR of a single Bloom filter for

each read only table created by a factor r, the system FPR

fprsys depends on r and the number of read only tables nrot

and can be given by

fprsys = 1−

nrot−1∏

i=0

(1− fprRO · ri) (4)

Memory Overhead (MO) The total memory consumed

by the system is divided into two parts: the memory required

for buffering the write requests and the memory consumed

by the BFs. Let m be the memory consumed by a read

only table and it can be easily calculated given the Bloom

filter fpr, the number of table rows nr and number of rows

combined to form a single read only table nrc. Let s be the

factor by which the memory m increases as fpr decreases

and depends on the rate r.

MO =
(nr · Szseg) + (m · nrot · (1 + s+ s2...+ snrot))

number of items
(5)

6. Evaluation

In this section, we explore the performance and memory us-

age characteristics of Muninn. The experiments are designed

to understand the benefits and limitations of hash-based allo-

cation and the use of BFs in terms of read/write amplification

factors and the number of operations per second.

Our experiments were conducted on a Linux machine

with 128 GB of memory. 64 GB is used to simulate flash

memory with 4 KB pages and 256 KB erase blocks (15µs

are added to each flash access). For Muninn, the size of a

segment is set to 1 MB. The number of table rows are set

to 128, meaning at maximum 128 MB of memory is used

as a page write buffer; this amount does not increase in

proportion to the number of keys. When full-versioning is

not used, the page write buffers are also used as a write cache

to be able to absorb the extreme burst updates of the same

key, i. e. 100 updates of the same key-value pair within a

second. Otherwise, it is used to buffer the small writes to fill

flash pages.

Muninn has been implemented as an ISCSI OSD target

device that supports a subset of the T10 OSD commands

to make our device usable under the current architecture.

However, during evaluation, we noticed that the delay of the

ISCSI protocol layer was often bigger than the delays of our

object operations, polluting the results: it was not easy to ac-

curately exclude the ISCSI delays. Thus, instead of using the

ISCSI layer, we create a benchmark tool that directly sends

the requests via an object interface. The workloads for this

benchmark tool were generated using Basho benchmark [5].

It is configured to generate 1 KB key-value workload using

sequential, random, and pareto distribution in order to un-

derstand the efficiency of our hash-based allocation scheme

under various workloads. Specifically, the pareto distribution

is designed to be the worst case, because 20% of the keys are

updated 80% of the time. We use a single thread to execute

each type of workloads of 50 million key-value pairs.

6.1 Segment Utilization and Memory Usage

The first experiment we conducted was to measure the seg-

ment utilization and memory usage varying the number and

types of per-segment BFs. A regular BF keeps the memory
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Figure 6. Segment utilization and memory usage; the S8/7

case used the smallest amount of memory while achieving

92% segment utilization.

overheads low, but offers only one bucket for a key, limit-

ing the key’s chances of finding free space. In contrast, the

overflow BF gives additional places for key-value pairs, but

increases the memory overheads. Our goal is to achieve a

balance between the two.

Figure 6 shows the results of our experiments to find

the balance using the three different distributions. The x-

axis represents the number of BFs for each segment and

the skewness of their size; one BF was dedicated for storing

overflowed keys in the 16/15 and 8/7 cases and no separate

overflowed key processing was done for 16/16 and 8/8 cases.

The prefix S and N indicate whether the maximum number

of keys per BFs is skewed or not.

Both 8/8 and 16/16 cases suffer from a low segment uti-

lization due to the limited number of locations available for

collided keys, but we can see that in the 8/7 and 16/15 cases,

an overflow map is successfully alleviating the issue without

increasing the memory usage much. It also shows that using

different size BFs uses less memory. This is because more

key-value pairs can be placed by the normal BFs; we make

the first Bloom filter, which is the largest, to serve the most of

the keys and adjust the size of the other smaller BFs to serve

the rest. Among various configurations, we found that the

S8/7 case used the smallest amount of memory while achiev-

ing more than 92% segment utilization similar to N16/15 and

S16/15, and used it for the rest of the experiments.

6.2 False Positive Rate

We measured the number of flash reads and the number of

bytes used per key to see the effects of the initial false pos-

itive rate and its increasing or decreasing factor. Each trace

is configured to generate the worst-case search performance;

only the key-value pairs in the oldest table are accessed. Fig-

ure 7 shows the number of flash reads per lookup and the

memory occupied by the BFs, varying the initial FPR and

FPR factor. We found that the number of reads is more sen-

sitive to the initial FPR than memory usage, so lowering
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Figure 7. Effects of false positive rate on memory over-

heads and read amplification

initial FPR would not increase its memory usage propor-

tionally. Therefore, to save memory, our policy was to pick

the highest initial FPR that provides less than 2 pages per

read and increase FPR slightly over time so old read-only

tables can have a lower FPR then recent read-only tables.

More specifically, we use an initial FPR of 0.0005 and a

FPR factor of 1.01 for the rest of the evaluation.

6.3 Read/Write Amplification and Performance

Using the design parameters chosen from the above exper-

iments, we measured read and write amplification, and the

number of flash accesses per operation in four categories, as

shown in Figure 8. When inserting a key-value pair, it shows

that Muninn requires 0.26 flash writes per operation, which

is near optimal because the size of the key-value is 1 KB and

the flash page is 4 KB; a write of a 1 KB value must write at

least 1/4 of a 4 KB page, absent data compression. The high

insert performance clearly shows the benefit of a hash-based

allocation. The key-value pairs can be placed with two hash

function calculations and a few Bloom filter operations; no

index structure is maintained and flushed to flash like SSDs

and other key-value stores, and no background operations

exist as in SILT. In this configuration adjusted to achieve the

worst-case read amplification of 2 and a nearly optimal write

amplification, Muninn used around 2.5 bytes per key, requir-

ing 250 MBs of in-device DRAM for 100 M keys.

Our lookup performance, on the other hand, varies de-

pending on the location of data to be retrieved. In the best

case where all requested key-value pairs are located in the

first few read-only version tables, Muninn achieves very

high read performance over 69,000 operations per second on

a single I/O thread with no read cache. However, in the worst

case where all data is in the oldest read-only table, it suffers

from false-positive reads and lots of Bloom filter operations,

and achieves only 20,000 operations per second. In the av-

erage case where the requested are evenly scattered across

the device, it performed 34,000 operations per second. In

this configuration, we tuned the system to achieve less than
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Figure 8. Read/Write amplification

2 page reads per look up, but the performance can be opti-

mized further by reducing the number of BFs or increasing

the number of rows per table.

Although the latency of lookup operations varies, the av-

erage performance of Muninn is compatible to the existing

key-value stores such as SILT and Bloomstore while provid-

ing full-versioning. With 4 instances of SILTs, it performs

23 K inserts/second and 46 K lookups/second for 1 KB key-

value pairs. Bloomstore performs 25k to 77k operations per

second using 64 B key-value pairs, retrieving 4.8 MB of data

per second, which is similar to SILTs in terms of throughput.

Muninn also achieves the similar lookup performance while

providing much higher insert performance.

6.4 Versioning Overhead

Supporting versioning does not add much additional over-

head to the flash device because of its out-of-place data

placement; all the previous data is left in flash until it is

cleaned. Since Muninn can retrieve the locations of any pre-

vious key-value pair without incurring additional costs com-

pared to normal key-value retrieval, versioning does not add

an operational cost.

However, when more than 20-30 updates to the same key

are given in a very short period of time, storing every single

update of the key will increase the space usage and merge

overhead, because Muninn can provide a fixed number of

places for each key per segment; we configure it to 24 in this

experiments. To minimize the size of the memory used by

the write buffers, if it exceeds 24, segments can be finalized

leaving the most of the space empty due to the high colli-

sions in the Bloom filter.

We ran both random and pareto distribution with and

without overwrites in the page write buffer. With pareto dis-

tribution, when the overwrites are enabled, it shows 94.1%

segment utilization and uses 2.143 bytes per key. After dis-

abling the overwrites, the segment utilization comes down

to 65.2% and the bytes per key is increased to 3.1. This can

be solved by fixing the size of the write buffer and use the

buffer until it becomes fully filled. Turning the overwrites

on does not increase the memory usage, but loses some up-
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Figure 9. Cleaning threshold for selecting a target internal

version

date histories of the very hot keys. When using the random

distribution, regardless of the page write buffer, both shows

around 94.1% utilization and around 2.14 bytes per key.

6.5 Cleaning Threshold

When a user requests a merge, Muninn scans the internal

versions from the oldest to the newest to select a target in-

ternal version to be cleaned, using threshold values; segment

utilization and the number of bit sets in the combined Bloom

filter. The segment utilization is calculated by counting the

unused space in normal BFs when flushing a row, and the

number of bit sets is measured upon a merge request to esti-

mate the number of live data within an internal version.

Figure 9 shows the relationship between the number of

bit sets in the combined Bloom filter and the amount of

live data in each read-only version table. In both internal

version sizes, it shows the number of bit sets gets higher

as the number of live data reduces. Based on this, we set

the threshold to skip the internal version whose expected

amount of live data is around 80%. Once the internal version

is selected, we investigate the segment utilization of each

segment to determine whether it needs to be cleaned or not.

7. Conclusion

We introduce Muninn, a full-versioning key-value store us-

ing the object-based storage model. By offloading the key-

value pair management into the device with a rich interface,

it achieves scalability, extensibility and efficiency. Muninn

is designed to demonstrate those properties. It can add ver-

sioning to existing applications without altering their design

using a version number is encoded in an object ID. For ef-

ficiency, Muninn shows the use of bloom-filters and hash

functions to place and search key-value pairs, eliminating

the need of per-object metadata or a direct mapping be-

tween LBAs and physical addresses. Our results show that

Muninn achieves as low as 1.5 flash page reads per look up

and 0.26 flash page writes per insert on average case, provid-

ing versioning.
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