IEEE Xplore Full-Text PDF:

2/29/24, 12:26 PM

2020 2nd International Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC)

Enabling Seamless Execution of Computational and
Data Science Workflows on HPC and Cloud with
the Popper Container-native Automation Engine

Jayjeet Chakraborty
UC Santa Cruz
orcid.org/0000-0003-1647-2494

Abstract—The problem of reproducibility and replication in
scientific research is quite prevalent to date. Researchers working
in fields of computational science often find it difficult to
reproduce experiments from artifacts like code, data, diagrams,
and results which are left behind by the previous researchers.
The code developed on one machine often fails to run on
other machines due to differences in hardware architecture, OS,
software dependencies, among others. This is accompanied by
the difficulty in understanding how artifacts are organized, as
well as in using them in the correct order. Software containers
(also known as Linux containers) can be used to address some of
these problems, and thus researchers and developers have built
scientific workflow engines that execute the steps of a workflow in
separate containers. Existing container-native workflow engines
assume the availability of infrastructure deployed in the cloud
or HPC centers. In this paper, we present Popper, a container-
native workflow engine that does not assume the presence of
a Kubernetes cluster or any service other than a container
engine such as Docker or Podman. We introduce the design and
architecture of Popper and describe how it abstracts away the
complexity of multiple container engines and resource managers,
enabling users to focus only on writing workflow logic. With
Popper, researchers can build and validate workflows easily in
almost any environment of their choice including local machines,
Slurm based HPC clusters, CI services, or Kubernetes based
cloud computing environments. To exemplify the suitability of
this workflow engine, we present a case study where we take
an example from machine learning and seamlessly execute it in
multiple environments by implementing a Popper workflow for
it.

I. INTRODUCTION

Researchers working in various domains related to computa-
tional and data-intensive science upload experimental artifacts
like code, figures, datasets, and configuration files, to open-
access repositories like Zenodo [1], Figshare [2], or GitHub [3].
According to [4], approximately 1% of the artifacts available
online are fully reproducible and 0.6% of them are partially
reproducible. A 2016 study by Nature found that from a group
of 1576 scientists, around 70% of them failed to reproduce
each other’s experiments [5]. This problem occurs mostly
due to the lack of proper documentation, missing artifacts,
or encountering broken software dependencies. This results
in other researchers wasting time trying to figure out how
to reproduce those experiments from the archived artifacts,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9297045

Carlos Maltzahn
UC Santa Cruz
orcid.org/0000-0001-8305-0748

Ivo Jimenez
UC Santa Cruz
orcid.org/0000-0002-2222-1985

ultimately making this process inefficient, cumbersome, and
error-prone [6].

Numerous existing research has tried to address the problem of
reproducibility [7] by different means; for example, logging and
tracing system calls, using workflow engines, using correctly
provisioned shared and public testbeds, by recording and
replaying changes from a stable initial state, among many
others [8]. These approaches have led to the development of
various tools and frameworks to address these problems of
reproducibility [9,10], with scientific workflow engines being
a predominant one [11-13]. A workflow engine organizes
the steps of a scientific experiment as the nodes of a directed
acyclic graph (DAG) and executes them in the correct order [14].
Nextflow [15], Pegasus [16] and Taverna [17] are examples of
widely used scientific workflow engines. But some phenomena
like unavailability of third-party services, missing example
input data, changes in the execution environment, insufficient
documentation of workflows make it difficult for scientists to
reuse workflows, resulting in workflow decay [18].

One of the main reasons behind workflow decay is the difficulty
in reproducing the environment where a workflow is developed
and originally executed [19]. Virtual machines (VM’s) can be
used to address this problem, as its isolation guarantees make it
suitable for running steps or the entirety of a workflow inside a
separate VM [20,21]. A VM is typically associated with large
resource utilization (e.g. long start times and high memory
usage), making OS-level virtualization technologies a better-
suited tool for reproducing computational environments with
fewer overheads [22,23]. Although software (Linux) containers
are a relatively old technology [24], it was not until recently,
with the rise of Docker, that they entered mainstream territory
[25].

Docker has been a popular container runtime for a long time,
with other container runtimes such as Singularity [26], Rkt
[27], Charliecloud [28], and Podman [29] having emerged.
With containers, the container-native software development
paradigm emerged, which promotes the building, testing, and
deployment of software in containers, simultaneously giving
rise to the practice of running scientific experiments inside
containers to make them platform independent and reproducible

Page 1 of 1



