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Abstract—Shingled Magnetic Recording (SMR) is a means
of increasing the density of hard drives that brings a new
set of challenges. Due to the nature of SMR disks, updating
in place is not an option. Holes left by invalidated data can
only be filled if the entire band is reclaimed, and a poor band
compaction algorithm could result in spending a lot of time
moving blocks over the lifetime of the device. We propose using
write frequency to separate blocks to reduce data movement
and develop a band compaction algorithm that implements this
heuristic. We demonstrate how our algorithm results in improved
data management, resulting in an up to 47% reduction in
required data movements when compared to naive approaches
to band management.

I. INTRODUCTION

Shingled Magnetic Recording (SMR) disks are devices that
increase the storage density of traditional disk media by writing
overlapping wide tracks of data, resulting in a shingle-like
arrangement of the tracks. This presents us with a problem
when overwriting previously written data, as it cannot be done
without overwriting adjacent tracks. Overlapping tracks are
therefore arranged into bands, and space reclamation is done
at a band level.

SMR disks therefore must employ band compaction to
reclaim bands containing overwritten data, a concept similar to
LES cleaning. A number of bands are read in their entirety, and
the valid blocks are compacted to a fewer number of bands,
creating bands of free space. However, this can easily become
expensive when the band compaction strategy is frequently
moving data. We propose an algorithm for band compaction
specifically designed to reduce long term data movement.

The more time a shingled disk spends in band compaction,
the more it is wasting resources. In the worst case, the system
may need to block for I/O until band compaction completes
making band compaction the bottleneck in the system and
drastically reduces system responsiveness during that time. It is
therefore necessary to develop band compaction strategies that
mitigate the cost to the system. We claim that by separating
blocks that are frequently updated from blocks that are less
frequently (or never) updated, we can move fewer blocks in
the long term. By applying this to band compaction, we have
developed an algorithm that seeks to reduce long term data
movement, potentially increasing the benefits of eliminating
unnecessary activity and data movement in addition to reduc-
ing the overheads of employing SMR media.

In order to reduce data movement, we are looking at using
write heat as a metric to guide band compaction. For the
purposes of this paper, write heat is measured in the frequency
of writes to a LBA. By separating incoming write data based on
write heat, we can reduce the likelihood of a band containing
a mixture of hot and cold data. Bands that contain a mix of
hot and cold data are more expensive to compact than bands
that contain only hot or only cold data. In addition, having a
large number of mixed bands can result in band compaction
occurring at a higher frequency.

For our purposes, we define data blocks to be “hot” if
they have been overwritten at least once and “cold” other-
wise. Bands that contain only cold data will be selected for
compaction more frequently, and have more data that must be
copied. Normally, this would cause concern but if the blocks
are cold, they are expected to be long-lived and less likely to
leave holes in a band. Bands that contain only hot data will
be compacted less often, and will have less data needing to
be copied per “hot” band. However, these blocks are volatile
and are likely to be invalidated in the future leaving holes
in the bands. Classifying data as hot or cold and placing it
accordingly helps to reduce both the number of bands read
before performing compaction as well as the overall amount
of data copied during band compaction.

In order to simulate SMR disks, we implemented a log-
structured file system (LFS) based translation layer with a
block-based API. LFS segments and SMR bands are similar in
concept, and band compaction in a SMR disk parallels segment
cleaning in LFS. However, due to the unique properties of
SMR disks, directly porting LES is not feasible.

Within this system, we replayed traces from the MSR Cam-
bridge data set [1]. We applied our algorithm and compared
it against a greedy algorithm that focuses on compacting the
emptiest bands. Our algorithm gives priority to the emptiest
bands, but also weights how much of the band is comprised
of cold data when selecting bands for band compaction. We
have found that the optimal value for the weight on cold varies
depending on the workload. We have also identified several
weight values that, while not optimal, provide a reduction in
data movement.

II. RELATED WORK

A log-structuring of data, possibly through a log-structured
file system or block remapping layer, seems suitable for SMR



disks. However, in order for a LFS to work for SMR disks,
data movement needs to be minimized, since writing to a band
is not the same as writing to the log in the original LFS.
Specifically, you can’t plug the holes in any of the bands and
you can’t update in place. The goal of the original LFS was
focused on creating large continuous spaces in which to write
the log. This directly conflicts with our goal of maximizing the
utilization of a band while minimizing data movement (thereby
reducing the overall performance overhead of employing SMR
disks).

Since SMR technology was developed after the original
LES, there are characteristics of SMR disks which the original
LES can not fully utilize. Shingled disks may have a random
access zone (RAZ) which can be used to hold metadata and
other frequently modified data. Metadata updates in LFS are
stored, like everything else, in the log. This can result in fre-
quent holes in LFS segments, forcing cleaning to happen more
often. Unless the segment is empty, segment cleaning results
in data movement; an increase in cleaning is contradictory to
our goal.

A. Log-Structured File Systems and their Successors

The log-structured file system (LFS) is a file system opti-
mized for writing [2]. It assumes that main memory will satisfy
more read requests as the size of main memory increases. This
means that most requests that make it to disk will be write
requests. LES appends all modifications to on-disk data to the
end of the log. By appending to the end of the log, LFS is able
to maximize disk bandwidth for writing. The log is divided into
segments, and a garbage collection policy is implemented to
periodically clean the segments. LFS implements a cost-benefit
policy for segment cleaning, shown in the formula below:

cost  free space generated * age of data

benefit cost

The free space generated is measured by how much of the
segment still contains live data. The age of the data is based
on when the data in the segment was written. This means that
heat is calculated on a per-segment basis, and does not change
if the individual blocks within the segment are overwritten
elsewhere. The cost of cleaning the segment is measured as
the cost to read the segment plus the cost of writing the live
data elsewhere.

While a LFS segment and a SMR disk band are similar,
our definition of heat is different. The original LFS makes two
major assumptions: first, that heat is related to the recency of
write; second, that blocks within a segment are written and
modified together. We chose to begin by looking at heat as the
frequency of a write to an LBA. This allows us to give data a
value for heat that can later be changed with age, rather than
a static “hot” or “cold” assignment. In addition, rather than
considering heat on a segment basis, we calculate heat on a
per-LBA basis. In this way, we can designate heat for specific
logical locations and assign blocks to hot or cold bands as they
are being written.

The free space generated is measured by how much of the
segment still contains live data. The age of the data is the age of
the most recently modified block in the segment, meaning that
heat is calculated on a per-segment basis. The cost of cleaning

the segment is measured as the cost to read the segment plus
the cost of writing the live data elsewhere. A problem with
the cost-benefit policy is that if there is one recently modified
block, but the rest of the data in the segment is very old, the
age calculation can be misleading.

While a LFS segment and a SMR disk band are similar,
and our metrics were informed by the metrics from the original
LFS, our definition of heat is fundamentally different. The
original LFS makes the assumption that heat is related to the
recency of access; we chose to begin by looking at heat as the
frequency of access. This allows us to give data a value for
heat that can later be changed with age, rather than a static
“hot” or “cold” assignment. In addition, we calculate heat on
a per-block basis, allowing us to assign blocks to hot or cold
bands as they are being written.

BSD-LFS took the original design of LFS and modified
it to work with UNIX FFS [3]. The authors evaluated BSD-
LFS using three workloads, the most notable of which was
the TPCB benchmark. When testing BSD-LFS using the
TPCB benchmark with 85% disk utilization, the cleaner was
constantly running and copying large amounts of data into
new segments. Blackwell et al. developed a simple heuristic
to reduce the overhead found in BSD-LFS [4]. They showed
that 97% of all cleaning in LFS during their tests could be
done in the background. The authors used a simple heuristic
of whether the disk had been idle for two seconds to signal that
the segment cleaner should begin running. Such a technique is
complimentary to our algorithm, and could be applied to SMR
disks in order to compact fragmented bands in the background,
rather than waiting for the disk to run out of free bands and
compacting on demand.

Matthews et al. demonstrated how to overcome the segment
cleaning problem at higher disk utilizations [5]. They present
an adaptive cleaning mechanism that chooses either full seg-
ment cleaning, as in LFS, or their technique of hole-plugging.
Hole-plugging reads in segments to be cleaned and fills holes
found in other segments with parts of the just-read segment.
Traditional LFS segment cleaning provides the best perfor-
mance until the disk utilization reaches 80-85%, at which point
hole-plugging provides superior performance. It is important to
note that, on a standard disk, the reason hole-plugging becomes
better is because at 80-85% utilization, traditional LFS segment
cleaning drops significantly in performance as shown in BSD-
LFS. Since hole-plugging is not generally usable in a SMR
disks, with the possible exception of within the RAZ, this work
is supplementary at best.

PROFS is a data reorganization scheme that is aimed at
improving I/O performance for log-structured file systems on
drives with zone-bit recording (ZBR) technology [6]. It places
“active” segments on the outer zones and inactive segments
on the inner zones to optimize for faster writes. A segment’s
active ratio is calculated using the average of the active ratio
of each file in the segment. As in LFS, active is calculated
by looking at recency of access, but PROFS also considers
the size of the file and the last active ratio. The reorganization
happens during LFS garbage collection. We will improve on
the ideas behind PROFS by identifying hot and cold according
to frequency at a block level, and place it accordingly as well
as reorganize during band compaction.



The closest LFS implementation to our work is the reorder-
ing Write buffer Of Log-structured File system, or WOLF [7].
WOLF sorts the incoming write data blocks into active and
inactive data buffers, again using recency of access as the
metric for active. The sorting of data before it is written
to disk is intended to reduce the overhead of the segment
cleaner. WOLF follows Matthews’ proposed cleaning heuristic
of combining the LFS cost-benefit policy with hole-plugging.
In addition to using frequency of access as our metric, we
continue to evaluate data during band compaction and place
data in hot and cold bands appropriately.

HyLog proposes a new type of hybrid log design to address
LES’s poor cleaning performance at high disk utilizations [8].
HyLog writes hot pages using standard LFS techniques, but
writes cold pages in an “update-in-place” style which they
call overwrite. Heat is measured on a per disk page basis,
using frequency of write over an interval of time. Each disk
page has a counter that is incremented every time it receives a
write during the measurement interval. After this interval, the
division of hot and cold pages occurs.

Segment cleaning in HyLog is adapted from Matthews’
cleaning technique with a notable change: in Matthews’ work,
the cleaning choices are either cost-benefit or hole-plugging
and the ratios are calculated over every segment equally, but
HyLog separates the ratios based on the heat of the segment.
Specifically, HyLog compares the best ratio for hole-plugging
over hot data, cost-benefit over hot data, hole-plugging for cold
data, and cost-benefit for cold data. While this is effective
for LFS, hole-plugging is not viable for SMR disks, nor is
updating in place.

There is often write contention found between the segment
cleaner and the incoming data to be written. Gecko [9] solves
this problem by chaining a small number of hard drives
together into a single log. The tail of the log then is at a
separate hard drive than the head of the log. By separating
the head and tail of the log in this way, there is no longer
write contention, as new data can be written to one drive while
another is cleaning segments.

B. Flash

There is a rich body of work in the area of Flash storage
that focuses on the separation of hot and cold data [10], [11].
However, some of the restrictions that apply to Flash and solid
state drives can be ignored for SMR disks and vice versa [12]
For instance, SMR disks do not care about wear leveling, nor
is it necessary to zero a band before writing to it. In addition,
bands can and will increasingly become much larger than a
Flash page or erase block. When reading or writing data, there
are seek penalties that must be considered for hard drives that
do not exist for Flash. Therefore, any application of techniques
borrowed from Flash would be in the spirit of their original
work, and would not be likely to work as a direct port.

C. Shingled Disk

Amer et al. originally introduced the potential for SMR
disks and the changes that would be required for their adop-
tion [13]. Pitchumani ef al. emulated a shingled write disk on
a traditional hard drive. While informative, it is not necessary
to fully emulate a shingled write disk to measure the reduction

in data movement [14]. Skylight [15] was novel and drilled a
hole into a SMR drive to understand how Seagate SMR drives
work. This work will be instrumental in making decisions
when testing our approach in the future.

Much of the research on SMR disks has focused on
mitigating the “random update problem” [16], [17], [18], [19].
This is because due to the nature of SMR disks, random
updates can not happen. This work is complementary to ours,
as we don’t treat random updates any differently. Since band
compaction is an inevitability, our work focuses on the proper
selection of bands for compaction.

There has been some work on developing file systems for
SMR drives [20], [21], which is also complimentary to our
work. If we have semantic information from the file system,
we can make better decisions on which bands have data
that are likely to stay cool and which are likely to heat up.
HiSMRfs [21] is capable of handling raw SMR drives, which
would make providing information to the algorithms to select
the proper bands for compaction more transparent.

III. ALGORITHMS

In order to use shingled disks effectively we look at algo-
rithms for reducing data movement during band compaction.
Our approach is to look at the nature of the data blocks, classi-
fying them appropriately. Techniques like this have been used
in the past to produce self-optimizing data storage systems [22]
and to reduce energy consumption of massive storage systems
and devices [23]. To that end, we’ve developed a mechanism
for classifying the hotness and coldness of data blocks which
can be employed as part of the band compaction process. We
compare our cold-weight algorithm against the more traditional
baseline ranking that does not attempt to classify the blocks.

A. Empty

Empty is our greedy naive algorithm, which will always try
to find an empty band. If there are no completely empty bands,
empty will pick the bands with the least amount of live data to
compact together. When compacting, empty will only find the
number of bands it needs. For example, in 2-band compaction,
empty will stop after finding the two bands with the least live
data; in 4-band compaction empty will stop after four.

B. Cold-Weight

The cold-weight algorithm combines a band’s freeness, or
the amount of free space, with the heat (or the lack thereof)
of the blocks contained within the band. The formula our
algorithm uses to select bands is shown in Equation 1. F is
the fraction of the band that is free; it is calculated as the
number of dead blocks in a band divided by the number of
blocks in the band. C is the fraction of the band that contains
cold data; it is calculated as the number of cold blocks in a
band divided by the number of blocks in a band. H is the
fraction of the band that contains hot data; it is calculated as
the number of hot blocks divided by the number of blocks in
a band. These three variables will add up to 1: F+ C + H =
1. weorq 1s the weight on cold and wy,; is the weight on hot.
All variables, fractions, and weights are expressed in decimal
form.

F+ (wcold X C) + (wh,ot X H) (D



Free: 0.17

Free: 0.50

Free: 0.33

(a) Empty

0.17 + 0.33*0.1 = 0.203

0.67 + 0.1770.1 = 0.687

0.67 +0.33*0.1 =0.703

(b) Cold-Weight

Fig. 1: Example of how empty and cold-weight would pick a band for single band compaction. In Figure 1(a) we show that
empty picks the band with the least amount of live data. In Figure 1(b) we show that cold-weight will pick the band with one
extra block of cold rather than a mix of hot and cold. This is because we assume that the hot block will invalidate itself in the

future leaving just one cold block.

Where H is the hot fraction of the band can be expressed in
terms of free and cold.

H=1-F-C 2

Thus, our algorithm can be simplified to look only at the
free space and the cold data. Equation 3 contains the final
form of the formula used by our algorithm to select bands for
compaction and shows how everything can be represented as
a weighted value on cold. In the derivation of Equation 3, the
addition of the term wy,; is dropped because it is a constant
value and does not change on a per-experiment basis.

F+ (wcold X C) + (whot X (1 —F — C))
F + (wcold X C) + Whot — (whot X F) - (whot X C)
F x (1 = whot) + C X (Weotd — Whot)

(wcold — Whot

F+Cx
1- Whot

3)

The weight on cold can increase or decrease the importance
of compacting bands that contain mostly cold data versus
mostly hot data. For the workloads examined, we have found
that a smaller weight on cold data produces the best results.
Using the formula in Equation 3, we calculate a value for each
band and select the bands with the highest values to use for
compaction.

IV. EXPERIMENTAL SETUP

In this section, we cover all of the components involved
in running our experiments. We introduce the input data sets
that were used to test the band compaction algorithms, and
discuss the methods used to stress the algorithms. We also
discuss a technique to better classify incoming blocks. Finally,
we outline our code flow and describe all possible paths an
incoming write block can take, along with the events that can
be triggered. All of the experiments were kept in memory and
“writing to disk” was simulated.

A. Data Sets

We use two traces from the MSR Cambridge data set
that was introduced in FAST 2008 [1]. Specifically, we use
the largest data volumes from the project (proj) and source
code (srcl) servers. The traces were gathered over a one week
period, are block traces, and are stored on servers running
NTFS. Table I shows some informative statistics about the
traces we used. Both traces were chosen for their large number
of write requests. We specifically chose the largest of the
data volumes for the project and source servers from the
MSR Cambridge traces because the data volumes will be
more similar to a user workload than the traces of the system
volumes.

B. Pre-population

Since the benefits of this technique should accumulate over
time, we are interested in behavior over ever-longer periods
of time and ever-larger data sets. To that end, in addition to
studying the basic MSR traces, we extended the workloads by
pre-populating our system with a random ordering of the same
trace we would be playing. We cut the trace into chunks of
10 timesteps where a timestep is considered to be one second.
This means that ten timesteps is at least 10 seconds, but could
be longer if there is a period of inactivity in the trace. These
chunks were randomly reordered and written out to a file.
We chose to write it to a file because we can recreate the
same on disk state for each run for fair comparison. We tested
both algorithms without pre-population, pre-populating with a
random selection of 50% of the writes in the trace, and pre-
populating with a random ordering of all of the writes in each
trace file.

C. Write Buffer

In order to model a more realistic workload we imple-
mented a write buffer, which also afforded the opportunity
better classify incoming blocks as hot or cold. The size of the
write buffer varies proportionally to the size of the band; it is
always double the band size. When the write buffer is filled,
it will pick an empty band to write out some of the data. If



TABLE I: Important statistics for the project and source control 1 servers.

Number of Write Requests

Total Data Written

Trace Footprint

Percentage of hot LBAs

Project Source 1
2,496,935 | 2,170,271
26 GB 31 GB
9.5 GB 4.4 GB
20.45% 19.45%

Percentage of cold LBAs

79.55% 81.55%

Percentage of trace that is hot

64.68% 88.81%

Percentage of trace that is cold

35.32% 11.19%

there is more hot data than cold data in the buffer, it will write
out the hottest half of the data blocks. If there is more cold
data than hot, the write buffer will write out the colder half
of the data blocks. When there are no empty bands to write
to, the write buffer will invoke band compaction. When band
compaction completes, the write buffer will write out the half
of the data with the more prevalent temperature until it fills
the newly free band.

D. Code Flow

When a write request comes in, the request is divided into
blocks. For each block written, a check is issued to see if it is
already “on disk”. If it is, the heat of the block is incremented,
and the current location on disk is marked as invalid. The block
is then added to the write buffer. If it does not exist on disk, the
block is marked as cold and immediately added to the write
buffer.

When the write buffer is full, it selects a band to fill from
any available empty bands. If there are no empty bands, the
write buffer will invoke band compaction. Band compaction
returns the location of a band to write to, and the write buffer
fills the band with either the hottest or coldest data in the
buffer as was described in Section IV-C. When the trace ends,
band compaction is called as many times as necessary to flush
the write buffer to disk. Currently, band compaction is only
invoked in these two situations, and in both situations it is
invoked by the write buffer.

When band compaction is invoked, the first step is to
calculate values for each of the bands in the system using one
of the algorithms described in Section III-B. The bands with
the highest values are selected based on however many bands
are being compacted. As mentioned previously, the entire band
has to be read, so all live data is read from the selected bands
and sorted by their current write heat. At this point, a cooling
step occurs: all of the heat counters are reset, making all of
the data previously read cold. This is the only point at which
data cooling currently happens. All of the bands that were
read from are now marked as empty and are free to use. The
live blocks that were read are written back to a free band. If
we fill up the band before running out of live blocks, another
recently freed band is selected and writing continues. When
all live blocks have been written back to disk, the band that
is currently being written to is the one that will receive future
writes. In the case where the last block we wrote to is the last
location in a band, another band is selected from the set of
recently freed bands.

V. RESULTS

We present the results that demonstrate the optimal weights
for both the empty algorithm and the cold-weight algorithm.

Table II shows the optimal improvement for each of the runs
using a band size of 40MB. The results for a band size
of 80MB are similar, and have been omitted due to space
constraints. For a band size of 40MB, the project data set
experiments use 279 total bands, and the source data set
experiments use 128 bands. We tested weights on cold in our
cold-weight algorithm in 10% increments.

In any band, there can be hot, cold, and free blocks. In
addition to moving fewer bands during band compaction, we
also want to minimize the number of bands that have a mix of
all three types of blocks, as this will give us a better separation
of hot and cold blocks. The graphs show the number of blocks
in each band that are hot (in red), cold (in blue), and free (in
green); the bands are then sorted by heat.

A. No Pre-population

Figures 2 and 3 show the distribution of hot and cold blocks
over all the bands in the experiments that were run without pre-
population. Due to the write buffer discussed in Section IV-C,
we achieve a very good separation of hot and cold data.

1) Project: Figure 2 shows the project data set experiments.
In both the empty and cold-weight experiments, the write buffer
kept the number of bands with a mix of hot, cold and free
blocks under 20. As seen in Table II, using cold-weight with
a 30% weight produced the best reduction in data movement,
a 12% improvement over empty.

2) Source: Figure 3 shows the source data set experiments.
In these experiments, the number of bands with a mix of blocks
was kept under 10 by the write buffer. It is interesting to note
that for this workload, the optimal weight for the cold-weight
algorithm was 50%, producing close to 3% improvement.

B. 50% Pre-population

We use a random selection of 50% of the write requests to
pre-populate the system, as described in Section IV-B. Since
we are using the same trace data to pre-populate the system as
we are to run the experiments and cooling only happens during
band compaction. Therefore, more hot blocks at the end of the
trace means that less data was moved.

1) Project: Figure 4 shows the distribution of hot and cold
blocks for all the bands in the project experiments. As can
been seen in the graphs, there is more hot data left by the
cold-weight algorithm than by the empty algorithm. This is
illustrated in Table II, where a 10% weight on cold shows a
4% improvement in reducing data movement. Additionally, for
this workload cold-weight does a better job of separating hot
and cold data, leaving only 27 bands that have a mix of hot,
cold, and free compared to empty’s 38 bands.
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Fig. 2: Comparison of the Empty and Cold-Weight algorithms for project without pre-population using 40MB bands. Green
represents free blocks, blue represents cold blocks, and red represents hot blocks.

Sourcel 40MB Bands - Empty - 0% Pre-population

80000 ‘

596%81 MB Bands - Cold Weight of 50% - 0% Pre-populatior

70000 70000

60000 60000
50000 50000
40000 40000
30000 30000

20000 20000

Composition of Blocks in Band
Composition of Blocks in Band

10000 10000

0

0 40 60 80 100 120 140 °

20 40 60 80 100 120 140
Distribution of Bands Distribution of Bands

Fig. 3: Comparison of the Empty and Cold-Weight algorithms for sourcel without pre-population using 40MB bands. Green
represents free blocks, blue represents cold blocks, and red represents hot blocks.
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Fig. 4: Comparison of the Empty and Cold-Weight algorithms for project with 50% pre-population using 40MB bands. Green
represents free blocks, blue represents cold blocks, and red represents hot blocks.



TABLE II: The optimal weights of cold-weight when compared to empty for the 40MB band experiments with different levels

of pre-population and different workloads.

No Pre-population
Experiment Blocks Moved | Percentage Improvement
Empty Project 40MB 2378357 -
Cold-Weight Project 40MB-30% weight 2082264 12.45%
Empty Sourcel 40MB 318607 -
Cold-Weight Sourcel 40MB-50% weight 310262 2.62%
50% Pre-population
Empty Project 40MB 71568329 -
Cold-Weight Project 40MB-10% weight 68478899 4.32%
Empty Sourcel 40MB 1608014 -
Cold-Weight Sourcel 40MB-40% weight 1548803 3.68%
100% Pre-population
Empty Project 40MB 72702645 -
Cold-Weight Project 40MB-10% weight 66031282 9.18%
Empty Sourcel 40MB 45122495 -
Cold-Weight Sourcel 40MB-50% weight 23830466 47.19%
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Fig. 5: Comparison of the Empty and Cold-Weight algorithms
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for sourcel with 50% pre-population using 40MB bands. Green

represents free blocks, blue represents cold blocks, and red represents hot blocks.

2) Sourcel: Figure 5 shows the results of the source
experiments. Interestingly, both cold-weight and empty have
11 bands remaining with a mix of hot, cold and free blocks.
In the cold-weight experiment, there is about one band’s worth
of extra hot blocks compared to empty. This means that most
of the segments with cold data were mostly full, so we were
selecting mostly empty segments with hot data and cooling
them. Table II shows that with a 40% weight, cold-weight
shows an almost 4% improvement.

C. 100% Pre-population

As in the experiments with 50% pre-population, more hot
data at the end of the trace (as shown in the graphs) means we
are touching less data during the course of the experiment. We
are pre-populating the system with 100% of the write requests
from the same trace data, in random order.

1) Project: The results of the project experiments are very
similar to the results with 50% pre-population. As can be seen
in Figure 6, there is more hot data remaining with the cold-
weight algorithm, reflected in the 9% improvement shown in
Table II. Cold-weight also does a better job of separating hot
and cold data, ending with 26 bands of mixed blocks compared
to empty’s 32 bands.

2) Sourcel: The source experiments with 100% pre-
population showed the greatest improvement in reducing data

movement, at 50% weight for our cold-weight algorithm.
Figure 7 shows the difference in the amount of hot data left
with cold-weight versus empty. Cold-weight with a weight of
50% results in a 47% improvement in reducing data movement.
While there are more bands with a mix of hot, cold, and free
blocks (19 bands in cold-weight versus 13 in empty), it is
most likely due to the behavior of the write buffer. Toward the
end of the trace, the write buffer wrote hot data to a recently
compacted band, resulting in mixed data. We will address this
behavior in future work.

VI. FUTURE WORK

The work presented here is only the beginning of our
work to develop techniques to reduce data movement in
storage systems and evaluate their usefulness to SMR disks
and their applications. The next immediate step is to explore
pre-populating with different percentages beyond 50 and 100,
in order to obtain additional data points. Additional data
points will help inform more future work and will also further
demonstrate the success of our work. In addition, we will
implement LFS’s cost-benefit policy as a band compaction
algorithm and compare it to our cold-weight algorithm.

We hypothesize that the bands containing a mix of hot
and cold blocks can be further reduced by modifying the band
compaction algorithm, as well as improving how the write
buffer flushes data. The write buffer can keep track of distinct
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hot and cold bands, and maintain this distinction when writing
data out. The band compaction algorithm then can be modified
to take advantage of these distinct hot and cold bands during
band compaction. All compacted blocks will be written to the
cold band, and a third band will be introduced to represent
blocks that “were once hot”, or were hot in the write buffer.

We will investigate other metrics beyond write frequency to
reduce data movement in SMR disks. The last element in this
stage of our work is to develop a dynamic band compaction
algorithm that automatically tunes the values of the weights.
Since workloads can, and often do, change behavior over
their lifetime, it is necessary to be able to adjust the band
compaction algorithm as needed in order to obtain the best
performance.

VII. CONCLUSIONS

Since band compaction is a necessity for SMR disks, it
is clear that improved algorithms are needed. In this paper,
we proposed using write frequency as a metric to separate
blocks in order to reduce data movement. We presented a
band compaction algorithm we developed that implements this
heuristics, and showed that our algorithm results in up to a 47%
reduction in required data movements when compared to naive
approaches.

Our algorithm cold-weight favors the selection of the
emptiest bands, but also weights how much of the band is
comprised of cold data when selecting bands to compact. We
found that the optimal value for the weight on cold varies
depending on the workload. However, there is always a weight
that produces an improvement in reducing data movement. We
also have shown that using a write buffer provides excellent
separation of hot and cold data.

We conclude that write frequency is a valid and useful
metric when used in a band compaction algorithm such as our
cold-weight algorithm. This kind of algorithm, combined with
a write buffer, reduces the amount of data moved over the
lifetime of a workload.
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