
Storage Access Support for Soft Real-Time Applications

Joel C. Wu Scott A. Brandt

Computer Science Department
University of California, Santa Cruz

�jwu,sbrandt�@cs.ucsc.edu

Abstract

Most research on QoS-aware storage has focused on the
use of QoS-aware disk schedulers. However, the increas-
ing intelligence and autonomy of modern disk drives have
made fine-grained external disk scheduling difficult. As this
trend continues, providing QoS-aware storage through ex-
ternal disk schedulers may become infeasible in the future.
In this paper, we present a coarse-grained approach to stor-
age bandwidth management that does not rely on external
disk schedulers. The goal is to provide better storage ac-
cess support for storage-bound soft real-time applications.
Our approach gives priority to disk requests generated by
soft real-time applications by controlling the rate that best-
effort disk requests may be dispatched.

1. Introduction

Today’s commodity computer systems are expected to
support mixed workloads including both best-effort and soft
real-time applications. Commodity operating systems typi-
cally employ best-effort resource management that does not
provide sufficient support for this mixed-workload scenario.
To address this issue, various approaches on QoS-aware
CPU scheduling have been proposed [16, 11, 4]. However,
having a QoS-aware CPU scheduler is not enough. Many
soft real-time applications today are alsostorage-bound [8],
they have stringent storage bandwidth requirements. The
quintessential example of this are the multimedia applica-
tions that need to access the disk regularly. If the CPU
scheduler is QoS-aware but the disk subsystem is not, the
storage may become the bottleneck and dictate the progress
of the soft real-time processes.

The need to provide disk access in a timely manner has
long been recognized [1, 10]. Most often this issue is ad-
dressed by employing external QoS-aware disk schedulers.
Such schedulers require detailed knowledge about the disk
drive internals in order to make accurate prediction of ser-
vice time. However, as technology advances and computing

power becomes cheaper, storage devices are gaining more
intelligence and encapsulate the increasingly complex in-
ternal details. Future disk drives are expected to continue
along this line and may even off-load additional functional-
ity from the main CPU, at which point fine-grained external
disk scheduling would become infeasible.

We believe that an approach to providing QoS for stor-
age without relying on fine-grained external disk scheduler
is necessary in order to handle intelligent storage devices
of the future. We present an approach to providing QoS
for storage from the coarse-grained perspective of band-
width management instead of using fine-grained external
disk scheduling. Our approach uses traffic shaping above
the external disk scheduler. When the disk bandwidth is
saturated and in the presence of both soft real-time and
best-effort disk requests, this approach can better support
storage-bound soft real-time applications by throttling the
rate of best-effort disk requests.

2. Motivation

QoS-aware disk schedulers are currently the predomi-
nant approach used to provide QoS for data storage. Exist-
ing disk schedulers can be classified into three types: best-
effort, real-time, and mixed-workload. For all disk schedul-
ing algorithms, the goal is to balance the two conflicting re-
quirements of response time and overall throughput while
meeting the design objectives of the scheduler. Best-effort
disk schedulers have no knowledge of deadlines or QoS re-
quirements. Both real-time and mixed-workloaddisk sched-
ulers are QoS-aware. The difference being that real-time
disk schedulers assume every I/O request has an associated
timing constraint [17] , while mixed-workload disk sched-
ulers are designed to handle heterogeneous disk requests
[20, 22, 6].

Disk scheduling is an intrinsically difficult problem. Op-
timal disk scheduling is NP-complete in general [21] and
differs from CPU scheduling due to its stateful and non-
preemptable nature. In addition, providing QoS through
disk scheduling requires fine-grained knowledge of disk

drive internals. The external disk scheduler needs to be
aware of parameters such as seek time, rotational latency,
logical to physical mapping, and other hardware-related de-
tails in order to make accurate prediction of the service time.

Hard drives used to be dumb devices that exported their
hardware profile to the system software. Today they are in-
telligent and autonomous units that encapsulate the inter-
nal details. The internal complexity is hidden from the out-
side and the disk is accessed through standardized inter-
faces. Modern fine-grained disk schedulers require disk pro-
filing in order to extract the values of the needed parameters
[19, 9, 23]. The probing of the drives is non-trivial and is
getting more difficult as drives become more intelligent.

Some of the challenges faced by fine-grained external
disk scheduling were identified [15]. Issues such as coarse
observation, on-board caching, drive internal scheduling,
rotational offset, and autonomous internal disk activities
complicate external disk scheduling. For example, the drive
internal scheduler poses a problem because the requests or-
dered by the external disk scheduler may be reordered by
the disk drive itself. Current solutions to this problem in-
clude disabling the disk internal scheduler (if possible), is-
suing only one request at a time, or relying on protocol sup-
port [12]. These solutions are oftenad hoc and not ideal.

Although fine-grained external disk scheduling is possi-
ble now with disk profiling, it may become infeasible in the
future as disk drives become ever more intelligent. As the
trend toward smarter disks continues, in the future it would
be very difficult, if not impossible, to maintain fine-grained
control over every minute operation that goes on inside of
a drive. Therefore, we believe that an alternative approach
to providing QoS for storage that does not require intricate
knowledge of disk drive internals is needed.

3. Traffic Shaping

A viable alternative to providing QoS support for
storage-bound soft real-time applications is to take a
coarse-grained view. Instead of providing QoS through
fine-grained scheduling of the disk, we can achieve QoS
by bandwidth management at the layer above the ex-
ternal disk scheduler. Our previous work on Dynamic
QoS Level Resource Management (DQM) [5] showed
that by adjusting resource usage such that the set of run-
ning applications use less than 100% of the available
resources, a best-effort scheduler is able to provide rea-
sonable soft real-time performance. Here we are applying
this result to disk. This approach can work with any exter-
nal best-effort disk scheduler.

We adapt the concept of traffic shaping from network-
ing for disk bandwidth management. Token Bucket Filter
(TBF) [7] is a mechanism for traffic shaping. In the net-
working context in which it was developed, TBF is placed

token bucket filter

Missed Deadline
Notification disk

best-effort
processes

soft
real-time
processes

TBF

external
disk

scheduler

Figure 1: Shaping the best-effort traffic going to
the disk

on a data path to impose a prioritization policy on data trans-
missions. We use token bucket filter to control the band-
width of data going to and from the disk. We choose token
bucket filter because of its simplicity and ease of implemen-
tation. Other mechanisms that can control the rate of events
can also be used. The disk requests are differentiated to al-
low the data to be viewed as distinct flows, and the TBF
can then be applied to shape the flows to achieve bandwidth
management.

The distinction of disk requests is done by associating
the disk request with the issuing process. In our current im-
plementation, we make a distinction between disk requests
generated by soft real-time (SRT) processes, those with a
QoS requirement, and best-effort (BE) processes, those with
no QoS requirement. Differentiation is done by checking a
flag in the disk request. Before accessing files, a process
can make a system call to declare itself as an SRT process.
Alternatively, this information can be automatically deter-
mined at run-time [2]. Subsequent disk I/O requests gener-
ated by SRT processes will be tagged as SRT, and all non-
tagged requests will be treated as BE requests. Therefore,
we can imagine a disk as having two access pipes, one pipe
carries all the SRT data and the other pipe carries all the BE
data.

We associate each BE disk access request with a token.
A BE request must have a token in order to be issued. If a re-
quest is to be issued but there is no token available, the pro-
cess triggering the request will be blocked until tokens be-
come available. TBF serves as the enforcer that controls the
rate BE requests can be issued and therefore shapes the size
of the BE data pipe. Since we are only classifying disk re-
quests into two types, we only need to shape the BE data
pipe and not the SRT data pipe, unless the SRT traffic be-
gins to starve the BE traffic. The idea of controlling disk
bandwidth by controlling the rate of requests is not new,
it was proposed as part of a mechanism that allocates disk
bandwidth proportionally by monitoring application’s rate
of progress [18].

2

4. Missed Deadline Notification

The TBF mechanism needs a specification of how to
shape the BE disk request rate. As with most resource man-
agement, the allocation decision can be either reservation-
based or feedback-based. Reservation-based schemes are
conceptually simpler but requirea priori knowledge of re-
source usage requirement, which may be difficult to de-
termine. We use Missed Deadline Notification (MDN) [3],
a feedback-based scheme, to determine how to shape the
BE disk request rate. MDN is a mechanism for soft real-
time processes to notify the operating system that they have
missed a deadline, so the operating system can adjust re-
source allocations accordingly. It allows the operating sys-
tem to receive feedback at run time on the status of the
soft real-time processes without requiring the soft real-time
processes to specify their resource usage requirements. Our
previous work on MDN focused on CPU scheduling. In this
paper we use Missed Deadline Notification to signify that
a missed deadline has occurred due to the inability to ac-
cess data from storage in time. We use MDNs generated by
SRT processes as an indication that the disk bandwidth is
saturated and the BE pipe needs to be reduced. In an in-
tegrated approach, an application can utilize two different
MDN calls, one for CPU and one for disk.

5. Storage Bandwidth Management

This section describes the rate-based approach to stor-
age bandwidth management using TBF and MDN. We use
TBF to indirectly shape the BE pipe size by controlling the
rate of BE requests, and MDN to handle feedbacks from
SRT processes in order to control the TBF. This approach
requires noa priori knowledge about the resource usage re-
quirements.

Under normal operating conditions when the disk band-
width is not overloaded, we do nothing and the system be-
haves identical to one without our implementation. It is only
when the disk bandwidth is overloaded that the effect of our
mechanism becomes visible. The concept is simple: when
the disk bandwidth is saturated and SRT processes cannot
receive the disk bandwidth they desire, we give SRT re-
quests preferential handling by throttling the rate of com-
peting BE requests. Figure 1 depicts this mechanism. MDN
notifies TBF to shrink the BE pipe to allow the expansion of
the SRT pipe. The mechanism tries to find a point at which
the SRT pipe receives the right bandwidth it needs while
the BE pipe takes up the rest. The following are the param-
eters associated with the mechanism.

� �: The rate the token bucket is replenished with new
tokens.� is dynamically adjustable subject to���� �

� � ����.

� ����: The minimum rate of token replenishment. To-
ken rate will not drop below this value. This guaran-
tees that best-effort requests will not starve.

� ����: The maximum rate of token replenishment. Set
to an arbitrary high value above the maximum attain-
able rate.

� �: The creepback rate.

� �: The percentage of reduction on� to be made each
time.

� �����	
��: The actual rate observed.

The values of� and� used in testing were obtained by em-
pirical tuning. Initially the token rate is set to an arbitrary
high value beyond the maximum attainable rate (����), in
essence placing no rate limitation. When an MDN is re-
ceived, there are two options. If the current value of� is
beyond the maximum attainable rate, such as the case when
the first MDN is received, we set� to �����	
�� � �� � ��.
Otherwise, we set� to � � �� � ��. To prevent starvation
of BE requests, the token rate will not drop below a pre-
specified lower bound����. To enable dynamic adaptivity,
we must also have a way of increasing the BE pipe size.
There are two ways this is achieved in our mechanism. Both
methods were implemented and tested.

The first method takes an optimistic view in the absence
of any a priori QoS specification. The BE token rate as-
sumes that any reduction in rate is spurious and there is un-
used bandwidth. It therefore tries to increase itself automat-
ically any time it needs additional bandwidth. Every time
the token bucket is replenished, we increase the token rate�

by a small increment�. This allows the token rate to creep
back up additively over time. The outcome is that when the
BE pipe size is capped (less than the maximum achievable
rate), it constantly increases its size, eventually pushing on
the boundary of SRT pipe until an MDN is generated by
SRT process, causing the BE pipe to decrease its size and
then repeat the growth again. When the workload is con-
stant and disk bandwidth is overloaded, this leads to a saw-
tooth pattern for BE pipe size. When the disk bandwidth is
not saturated, the BE pipe size eventually grows to beyond
the maximum achievable rate, and the effect of our mecha-
nism becomes invisible.

The second approach takes a pessimistic view and as-
sumes that any missed deadline is an indication that the cur-
rent BE token rate is too high and should be reduced until
we are sure it can be increased. Instead of having the BE
pipe size constantly trying to expand itself to make full uti-
lization of the bandwidth, we will tell it when to expand.
Specifically, the BE token rate will drop whenever an MDN
is received, and it will not increase until an SRT process
is done with a stream. The constant increasing of BE pipe
size that pushes against SRT pipe size periodically is elim-
inated. The dynamic adjustment of BE pipe size will only

3

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

CR stream 1 (8 MB/s)
CR stream 2 (8 MB/s)
CR stream 3 (8 MB/s)
CR stream 4 (8 MB/s)

(a) No SRT boosting - normal Linux behavior

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

SRT boosted CR stream 1 (8 MB/s)
CR stream 2 (8 MB/s)
CR stream 3 (8 MB/s)
CR stream 4 (8 MB/s)

(b) BE token rate: (90 requests/second) - SRT boosted
stream receives more bandwidth but still not the desired
amount

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

SRT boosted CR stream 1 (8 MB/s)
CR stream 2 (8 MB/s)
CR stream 3 (8 MB/s)
CR stream 4 (8 MB/s)

(c) BE token rate: (50 requests/second) - SRT boosted
stream receives desired bandwidth

Figure 2: Reserving bandwidth for SRT boosted
stream by setting BE token rate to fixed values.
By decreasing the BE token rate, we increase the
boost to SRT bandwidth.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

SRT boosted CR stream 1 (8 MB/s)
CR stream 2 (8 MB/s)
CR stream 3 (8 MB/s)
CR stream 4 (8 MB/s)

(a) Stream 1 receives SRT boosting - optimistic method.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

SRT boosted CR stream 1 (8 MB/s)
CR stream 2 (8 MB/s)
CR stream 3 (8 MB/s)
CR stream 4 (8 MB/s)

(b) Stream 1 receives SRT boosting - pessimistic method.

Figure 3: Using MDN to control BE token rate.

happen when an SRT stream is introduced, when an MDN
call is received, and when an SRT stream is done access-
ing a file. This can be done by a system call or automati-
cally when an SRT process closes a file or exits. In both ap-
proaches, our anti-cheat feature [3] can be used to prevent
processes from abusing the MDN mechanism.

6. Experimental Results

We implemented this approach for storage bandwidth
management on Linux 2.6.0. For each request queue associ-
ated with a block device, we added a token bucket filter and
a wait queue. A BE process must obtain a token before it
can issue a request. Processes whose requests can not be is-
sued because of token unavailability will be placed on the
token wait queue pending availability of new tokens. A ker-
nel thread is used to replenish the tokens and handle the
creepback of token rate. Missed Deadline Notification is im-
plemented as a simple system call. The files being accessed

4

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

CR stream 1 (10 MB/s)
CR stream 2 (10 MB/s)
CR stream 3 (10 MB/s)

(a) No SRT boosting - normal Linux behavior

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

CR stream 1 (10 MB/s)
CR stream 2 (10 MB/s)

SRT boosted CR stream 3 (10 MB/s)

(b) Stream 3 receives SRT boosting - optimistic method

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

BE CR stream 1 (10 MB/s)
BE CR stream 2 (10 MB/s)

SRT boosted CR stream 3 (10 MB/s)

(c) Stream 3 receives SRT boosting - pessimistic method

Figure 4: Three constant-rate streams. Stream 1
and 2 span entire running time, stream 3 starts at
time 60.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

no SRT boosting
SRT boosting: optimistic

SRT boosting: pessimistic

Figure 5: Total throughput relative to BE token rate

by soft real-time processes are tagged and the tags are per-
meated down the VFS layer so that its resulting disk access
request can be distinguished.

Our test system is a 1.5 GHz P4 with 512MB of RAM.
The disk is a Seagate ST340810A IDE drive formatted with
an ext2 file system. The bandwidth of the disk is about 27.59
MB/s for sequential reads. We developed a test program
sbsrtgen that models the storage access behavior of video
players that follow a regular pattern of behavior.

Testing focused on the performance of constant bit rate
(CBR) sequential read. In CBR modesbsrtgen tries to read
data at a constant rate. In SRT boosted constant-rate mode,
it utilizes the bandwidth management mechanism by declar-
ing itself as SRT and uses Missed Deadline Notification. Al-
though mpeg video data are of variable bit rate (VBR), we
use CBR insbsrtgen because it allows the characterization
of performance more clearly by avoiding the fluctuations in
bandwidth due to the random nature of VBR. Our approach
would be advantageous mainly to workloads having con-
tinuous traffic flows such as video streams. MDN-based re-
active control may be too slow to adapt and less beneficial
to SRT processes with short and sporadic traffic patterns.
Also, this scheme’s effectiveness on VBR stream would be
less than on CBR, as the natural fluctuation of stream band-
width would cause more instability and more difficult for
MDN to adapt to. In this section, a stream refers to a flow of
data between the disk and a process, whereas a pipe in Sec-
tion 5 referred to a collection of individual streams of the
same type, either SRT or BE.

Figure 2(a) shows the result of four 8 MB/s streams run-
ning simultaneously without using our mechanism. The to-
tal demand is beyond the maximum bandwidth of the disk.
We see that all four streams receive approximately the same
bandwidth that is less than the desired rate of 8 MB/s each.
The total throughput is 16.8 MB/s. This is the default Linux
behavior.

We now show the validity of using TBF to shape disk
bandwidth by setting the token rate to fixed values, in the

5

same way that a reservation-based scheme would work. In
this experiment, one of the four 8 MB/s streams declares
itself as SRT. Figure 2(b) shows the result when the BE
token rate is set to 90 tokens per second (t/s). The SRT
stream is able to receive more bandwidth than the three BE
streams, but still not receiving its desired 8 MB/s. We de-
crease the BE token rate further to 50 t/s, and as shown
in Figure 2(c), the SRT boosted stream is able to receives
its desired 8 MB/s at the expense of the BE streams. This
method is highly effective at meeting SRT deadlines when
we know the storage QoS requirements of the processes
in advance. The 50 t/s token rate results in a 12% loss of
overall throughput compared to the default Linux behavior.
Interestingly, our 90 t/s filter actually achieved 3% higher
utilization than Linux, indicating that in some cases traf-
fic shaping can actually increase overall utilization, perhaps
by increasing the overall sequentiality of the requests pre-
sented to the disk.

Without a priori knowledge of the storage QoS require-
ments, the static TBF values of the above experiment are
relatively useless. We now show the result of using MDN
for feedback-based control without sucha priori informa-
tion. Figure 3(a) shows the result when one of the streams
uses our optimistic method for SRT boosting. The SRT
boosted stream is able to receive its required 8 MB/s band-
width. The periodic spikes in its bandwidth are caused by
the MDN calls and the behavior of mpeg players after miss-
ing deadlines. The overall throughput is 15.85 MB/s. Figure
3(b) shows the result when the SRT boosted stream uses the
pessimistic method. We see that the bandwidth of the SRT
boosted stream spikes only twice during the adjustments to
decrease the BE pipe size, and then it is able to maintain the
8 MB/s rate smoothly. Overall throughput is 14.48 MB/s.
The pessimistic method is more aggressive at boosting SRT
stream performance at the expense of about 8.6% drop in to-
tal throughput.

The next experiment shows the effect of an SRT boosted
stream entering a system that is approaching bandwidth sat-
uration. Each of the three streams consume a bandwidth of
10 MB/s. Two streams started at time zero and span the en-
tire running time while the third stream is introduced at
time 60. Figure 4(a) shows the result without using SRT
boosting. The introduction of the third stream saturates
the bandwidth and brings down the bandwidth of the two
other streams already in progress, and the third stream it-
self is also unable to receive the 10 MB/s desired. All three
streams receive approximately the same bandwidth.

Figure 4(b) shows the effect when the third stream uti-
lizes the optimistic method for SRT boosting. Its introduc-
tion at time 60 caused the other two streams’ bandwidth to
drop, but its own bandwidth remains constant at 10 MB/s
with the expected periodic spikes. Figure 4(c) shows the
effect when the third stream utilizes the pessimistic SRT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

CR stream 1 (10 MB/s)
CR stream 2 (10 MB/s)

SRT boosted CR stream 3 (10 MB/s)

(a) Optimistic method: constantly tries to creepback, caus-
ing periodic spikes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

CR stream 1 (10 MB/s)
CR stream 2 (10 MB/s)

SRT boosted CR stream 3 (10 MB/s)

(b) Pessimistic method: creepback only when bandwidth
changes

Figure 6: Comparing the optimistic method
and pessimistic method of creepback. The SRT
boosted stream terminates at time 90.

boosting method. After two spikes resulting from band-
width adjustments, it is able to obtain and maintain the
desired bandwidth without further spikes. Figure 5 com-
pares the total throughput for no SRT boosting and using
SRT boosting with the two methods. As expected, the op-
timistic method is more unstable. After the introduction of
the third stream, with no boosting, the overall throughput is
17.37 MB/s. With SRT boosting, the optimistic method has
an overall throughput of 16.63 MB/s, and the pessimistic
method has an overall throughput of 15.48 MB/s. The over-
all throughput of the optimistic method is 7% higher than
the pessimistic method. Again, the optimistic method is
more aggressive and therefore the total bandwidth utiliza-
tion is higher. The tradeoff is that it causes more missed

6

deadlines and more MDNs to be generated, and therefore
the periodic spikes in SRT bandwidth.

Figure 6 shows the difference in the creepback of BE
bandwidth between the optimistic and the pessimistic ap-
proach. The SRT boosted stream terminates at time 90.
In the optimistic approach shown in Figure 6(a), the BE
streams constantly tries to increase its size and drop when it
encroach on the SRT stream’s bandwidth. When the SRT
boosted stream is terminated, the bandwidth of the BE
streams creeps back gradually. In the pessimistic method
shown in Figure 6(b), the BE bandwidth does not try to
creep back constantly and therefore it does not cause the
spikes. After the SRT boosted stream terminates, it is able
to regain the newly freed bandwidth immediately. In this
test case, the overall throughput up to the point where the
SRT boosted stream terminates is 16.81 MB/s for the opti-
mistic method, and 16.47 MB/s for the pessimistic method,
a difference of only 2%.

Figure 7 shows the effect when we introduce and remove
an SRT boosted stream using the pessimistic method. An 11
MB/s constant-rate stream is running and receiving its de-
sired rate. When a 9 MB/s SRT boosted stream is introduced
at time 40, the first stream drops to a little above 4 MB/s
while the SRT boosted stream gets the 9 MB/s it wants af-
ter some small transient spikes in bandwidth. When the SRT
boosted stream terminates at time 140, the bandwidth of the
first stream returns to 11 MB/s immediately.

Figure 8 shows a scenario with more than one SRT
boosted stream using the pessimistic method. Three 8 MB/s
constant-rate streams and one 8 MB/s SRT boosted stream
start at time zero. The second SRT boosted stream is intro-
duced at time 80 and desires 6 MB/s. Its introduction caused
the bandwidth of the first 3 streams to drop even further as
they make room for the SRT boosted stream. The rate of the
first SRT boosted stream fluctuates a little when the second
SRT boosted stream is introduced as the system adjusts the
bandwidth allocation. Both SRT streams receive their de-
sired rates.

7. Future Work

We plan to explore this idea further by refining our im-
plementation. Currently we associate a token with a disk
request, which represents data located contiguously on disk
but may be of variable size. An alternative method is to as-
sociate a token with a fixed size of data. Associating a token
with another unit of resource such as time is also possible.
It may also be beneficial to introduce more types of disk re-
quests, for example, adding an interactive disk request type
in addition to best-effort and soft real-time. The current im-
plementation does not differentiate between read and write,
and we plan to refine our approach by making this distinc-
tion and handle read and write bandwidth separately. In ad-

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

CR stream 1 (11 MB/s)
SRT boosted CR stream 2 (9 MB/s)

Figure 7: SRT boosted stream using pessimistic
method enters at time 40 and terminates at time
140.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

BE CR stream 1 (8 MB/s)
BE CR stream 2 (8 MB/s)
BE CR stream 3 (8 MB/s)

SRT boosted CR stream 4 (8 MB/s)
SRT boosted CR stream 5 (6 MB/s)

Figure 8: More than one SRT boosted streams
using pessimistic method. Second SRT boosted
stream starts at time 80.

dition, the bandwidth management mechanism can be fur-
ther refined to increase overall bandwidth utilization.

Although we are pleased with our current results, the
feedback-based control mechanism using MDN is neverthe-
less anad hoc heuristic-based scheme. Control theory has
been applied in feedback-based real-time scheduling [14]
and QoS management [13]. In the future we will be explor-
ing more formal control-theoretic approaches to reap the
benefits of having a theoretical foundation. This would al-
low the analysis of the parameters, control delays, and sta-
bility issues.

8. Conclusion

Modern disk drives are becoming increasingly intelli-
gent. We believe that an approach to provide QoS for stor-
age without relying on fine-grained external disk scheduling
is needed to cope with the intelligent storage devices of the
future. We presented a token-based approach that can better

7

support storage-bound soft real-time applications by con-
trolling the rate non real-time applications can issue disk re-
quests. Our results demonstrated that it is feasible to provide
QoS for disk from the coarse-grained perspective of band-
width management. This approach can be used to form a
comprehensive framework for storage bandwidth manage-
ment incorporating both reservation-based and feedback-
based resource allocation schemes.

Acknowledgements

This research was supported in part by Lawrence Liv-
ermore National Laboratory, Los Alamos National Lab-
oratory, and Sandia National Laboratory under contract
B520714, and by Intel Corporation.

We are also grateful to our sponsors: The National Sci-
ence Foundation, The USENIX Association, Hewlett
Packard Laboratories, IBM Research, Microsoft Re-
search, ONStor, Overland Storage, and Veritas.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling I/O requests
with deadlines: A performance evaluation. InProceedings of
the IEEE Real-Time Systems Symposium (RTSS ’90), pages
113–124, December 1990.

[2] S. Banachowski and S. Brandt. The BEST scheduler for inte-
grated processing of best-effort and soft real-time processes.
In Proceedings of the SPIE, Multimedia Computing and Net-
working (MMCN), pages 46–60, January 2002.

[3] S. Banachowski, J. Wu, and S. Brandt. Missed deadline noti-
fication in best-effort schedulers. InProceedings of the SPIE,
Multimedia Computing and Networking (MMCN), January
2004.

[4] S. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic
integrated scheduling of hard real-time, soft real-time and
non-real-time processes. InProceedings of the IEEE Real-
Time Systems Symposium (RTSS ’03), December 2003.

[5] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A dynamic
quality of service middleware agent for mediating applica-
tion resource usage. InProceedings of IEEE Real-Time
Systems Symposium (RTSS ’98), pages 307–317, December
1998.

[6] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-
schatz. Disk scheduling with quality of service guarantees.
In IEEE International Conference on Multimedia Comput-
ing and Systems, volume 2, pages 400–405, June 1999.

[7] D. Clark, S. Shenker, and L. Zhang. Supporting realtime ap-
plications in an integrated services packet network: Archi-
tecture and mechanisms. InProceedings of the ACM SIG-
COMM, 1992.

[8] Z. Dimitrijevic and R. Rangaswami. Quality of service sup-
port for real-time storage systems.International IPSI-2003
Conference, October 2003.

[9] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Diskbench:
User-level disk feature extraction tool. Technical report,
UCSB, November 2001.

[10] J. Gemmell, H. Vin, D. Kandlur, P. Rangan, and L. Rowe.
Multimedia storage servers: A tutorial and survey.IEEE
Computer, 28(5):40–49, 1995.

[11] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU sched-
uler for multimedia operating systems. InProceedings of
the 2nd Symposium on Operating Systems Desgin and Im-
plementation (OSDI ’96), pages 107–121, October 1996.

[12] K. Kim, J. Hwang, S. Lim, J. Cho, and K. Park. A real-
time disk scheduler for multimedia integrated server consid-
ering the disk internal scheduler. InProceedings of the In-
ternational Parallel and Distributed Processing Symposium,
pages 124–130, April 2003.

[13] B. Li and K. Nahrstedt. A control-based middleware frame-
work for quality of service adaptations.IEEE Journal on Se-
lected Areas in Communications, 17(9):1632–1650, 1999.

[14] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback con-
trol real-time scheduling: Framework, modeling, and al-
gorithms. Real-Time Systems Journal, Special Issue on
Control-theoretical Approaches to Real-Time Computing,
23(1/2):85–126, July/September 2002.

[15] C. Lumb, J. Schindler, and G. Ganger. Freeblock scheduling
outside of disk firmware. InProceedings of the Conference
on File and Storage Technologies (FAST), USENIX, January
2002.

[16] C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves: Operating system support for multimedia appli-
cations. InInternational Conference on Multimedia Com-
puting and Systems, pages 90–99, 1994.

[17] A. L. Reddy and J. Wyllie. Disk scheduling in a multime-
dia I/O system. InProceedings of ACM Conference on Mul-
timedia, pages 225–233. ACM Press, 1993.

[18] D. Revel, D. McNamee, C. Pu, D. Steere, and J. Walpole.
Feedback based dynamic proportion allocation for disk I/O.
Technical Report CSE-99-001, Oregon Graduate Institude of
Science and Technology, December 1998.

[19] J. Schindler and G. Ganger. Automated disk drive character-
ization. Technical Report CMU-CS-00-176, Carnegie Mel-
lon University, December 1999.

[20] P. Shenoy and H. Vin. Cello: A disk scheduling framework
for next generation operating systems. InProceedings of the
ACM SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems, pages 44–55. ACM Press, 1998.

[21] H. Vin, A. Goyal, and P. Goyal. Algorithms for designing
large-scale multimedia servers.Computer Communications,
18(3):192–203, March 1995.

[22] R. Wijayaratne and A. L. Reddy. Integrated QOS manage-
ment for disk I/O. InProceedings of the IEEE Interna-
tional Conference on Multimedia Computing and Systems,
volume 1, pages 487–492, June 1999.

[23] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. On-line
extraction of SCSI disk drive parameters. InProceedings of
the 1995 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 146–156. ACM
Press, 1995.

8

